
 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 1 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

Security Design Concepts
Target Course
Software Engineering, Software Design
Learning Goals
A student shall be able to:
1. Describe security design principles and identify security issues associated with common

threats and attacks.
2. Apply principles of secure design and defensive programming techniques when developing

software.
IAS Outcomes
The CS2013 Information Assurance and Security outcomes addressed by this module are:

IAS Knowledge Topic Outcome

Principles of Secure
Design

1. Describe the principle of least privilege and isolation as applied to system design.
[Familiarity]
2. Summarize the principle of fail-safe and deny-by-default. [Familiarity]
3. Discuss the implications of relying on open design or the secrecy of design for
security. [Familiarity]
4. Explain the goals of end-to-end data security. [Familiarity]
5. Discuss the benefits of having multiple layers of defenses. [Familiarity]
7. Describe the cost and tradeoffs associated with designing security into a product.
[Familiarity]
8. Describe the concept of mediation and the principle of complete mediation.
[Familiarity]
9. Describe standard components for security operations, and explain the benefits of
their use instead of reinventing fundamentals operations. [Familiarity]
11. Discuss the importance of usability in security mechanism design. [Familiarity]

Dependencies
• A student understands the cybersecurity topics covered in Input Validation and Principles.
Summary
Discuss security design principles as it relates to the design and development of software
applications and systems.
Estimated Time
40 minutes.
Materials
What are the security principles that should be adhered to when designing and
implementing a system?
The first ten principles come from a paper written by Saltzer and Schroeder in 1975 [1].

1. Economy of mechanism Keep your design as simple as possible (aka KISS-Keep It
Simple Stupid). This allows quality assurance methods
(e.g., formal reviews, design walkthroughs) to have the
greatest chance of finding security vulnerabilities.

2. Fail-safe defaults The default setting/action should be to favor security over
usability. When in doubt, deny access. That is, your design

https://creativecommons.org/licenses/by/4.0/

 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 2 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

should base access to data on permission rather than
exclusion. Only when the protection scheme identifies
conditions to permit access should the data be accessible.
In contrast, creating a scheme that describes the conditions
for refusing access presents the wrong psychological
perspective for a secure software design. To state another
way, the rules needed to express permission are likely to be
simpler to understand than the rules needed to refuse
permission.

3. Complete mediation Every access request should be checked for adherence to a
protection scheme. This implies that a foolproof method of
identifying the source of each request must be devised and
suggests that ideas about improving performance by
remembering the result of a previous authority check be
examined skeptically. Care must be taken when a change
in authority occurs, to ensure that the remembered results
are systematically updated.

4. Open design Publish your design for anyone to review. This allows
reviewers to comment on the security mechanisms being
used while protecting the keys or passwords that are used
by the mechanisms. You should assume that your design is
not a secret.

5. Separation of privilege Originally defined as requiring multiple conditions to access
a restricted resource or to perform some action (e.g.,
require two or more keys to unlock a protection
mechanism). More recently, this has been defined as
separating components of a system to reduce damage
when a security breach occurs in any one component.

6. Least privilege Each user and program should operate with the minimum
set of privileges necessary to accomplish the job. When
software must access an information asset, it should ideally
be granted this access only for the moments in time when it
is using the information asset. This limits the damage that
may result from an accident or error.

7. Least common mechanism Minimize the number of resources being shared/used by
more than one user or system. Each security mechanism
that is shared among most/all users or is shared among
systems, especially when shared variables are used,
represents a potential information path that may
unintentionally compromise security. Do not share objects
and protection mechanisms, instead create separate
instances for each user or system interface.

8. Psychological acceptability User interfaces related to security mechanisms should be
designed based on what a user expects. A well designed
HCI will match the protection mechanism to the user's
mental image of their protection goals.

https://creativecommons.org/licenses/by/4.0/

 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 3 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

9. Work factor The cost of compromising a security mechanism should be
compared with the resources of an attacker when designing
a security scheme. When a likely attacker has limited
resources, the system may require less sophisticated
defensive mechanisms.

10. Compromise recording It may be more desirable to record the details of an
intrusion rather than designing more sophisticated
prevention mechanisms.

In 2013, Gary McGraw [2] expanded on the security principles identified by Saltzer and
Schroeder by adding five more principles1.

11. Secure the weakest link The suite of security mechanisms being used are only as
good as the weakest security mechanism being used. The
analogy often used is that a chain is only as strong as its
weakest link. Likewise, a system is only as secure as its
weakest security mechanism.

12. Defend in depth Your design should include redundancy and layers of
defense. This approach looks to manage security risks by
using a diverse set of security mechanisms that provide
redundant capabilities or are provided by different software
layers.

13. Be reluctant to trust Be skeptical of security protections that are not within your
software system. The quote "trust but verify" often used to
describe international agreements to limit nuclear weapons
is a good motto to follow when it comes to placing your
software within an operating environment. A cloud provider
may claim to provide certain protections, but it is best to
verify these as best you can.

14. Promote privacy Your design needs to consider the types of personal
information you are collecting from a user. Do you really
need the information you are requesting? Should the
personal information be encrypted? Does this data really
need to be persistently stored?

15. Use your resources Nobody knows everything about what a good software
security design looks like. Talk to others about the design
choices you are making. Have experts with different
backgrounds review your design.

What are the common access control models?
• Access control matrices A table that defines permissions for each resource. Each

row identifies the users and systems needing access to
resources while each column identifies each resource (e.g.,

1 McGraw includes the first 8 principles from Saltzer and Schroeder then adds 5 principles to get to 13.
Thus, McGraw’s article is titled “Thirteen Principles …”.

https://creativecommons.org/licenses/by/4.0/

 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 4 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

file, directory, device). Each cell shows the access rights
(e.g., read, write, execute) for the user/system specified at
the start of the row and the resource identified at the top of
the column.

• Access control lists A list of users and systems that have access rights to a
resource. Each resource has a separate list.

• Capabilities A list of resources and access rights. Each user or system
has a separate list.

• Role-based access control Roles are defined and given access rights. Users and
systems are then assigned one or more roles.

What are the cryptographic concepts that should be understood and used?
• Cryptosystems Encryption and decryption of data. Symmetric encryption

uses the same secret key to encrypt and decrypt the data.
Asymmetric encryption (aka public-key encryption) uses a
public key to encrypt the data and a private key to decrypt
the data.

• Digital signatures Use public-key encryption to verify who sent you the data.
The sender encrypts the data using their private key.
Anyone receiving this data may use the sender’s public key
to decrypt the data. In theory, only the sender knows their
private key and so this verifies that the data did come from
the sender.

• Simple attacks on
cryptosystems

See the module Common Attack Types.

• Cryptographic hash
functions

A type of checksum on a data value that has two important
properties: the hash function is a one-way function and the
checksum generally contains many fewer bits than the
original data value. A one-way hash function produces a
checksum given a data value. But it is hard to recreate the
data value if all you have is a checksum value.

• Digital certificates A statement from a certificate authority that combines a
public key with identifying information about the entity that
owns that public key. This is used to ensure that the public
key being used is associated with the entity you want to
communicate with.

What issues exist in correctly implementing and using computer security mechanisms?
• Efficiency and usability Providing security mechanisms that are slow gives a user a

disincentive to use these mechanisms. Using a security
mechanism that is easily misunderstood by a user allows
for greater potential in misuse, which may result in
vulnerabilities.

• Passwords A primary authentication mechanism. Ideally, passwords
should be hard to guess but easy to remember.

https://creativecommons.org/licenses/by/4.0/

 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 5 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

• Social engineering A collection of attacks that take advantage of the trust
people place in information systems. Examples include
phishing, spear phishing, spoofing, pretexting, and quid pro
quo. These types of attacks are the digital equivalent of
traditional methods (i.e., con, scam,) to defraud a
person/group after gaining their trust.

• Vulnerabilities from
programming errors

A design should provide clear instructions on how to
implement security mechanisms and how to test a system
against all security requirements.

Assessment Strategies
Short answer questions that have been included in a take-home final exam for a Software
Design Course are listed below. A possible answer is included in bold italics.

In a Word document, answer the following questions. Please identify each of your answers
using the outline numbering for each question.
1. In a few sentences, explain the security design principle of work factor.

The security design principle of work factor says that the cost of developing security
controls/mechanisms should be balanced with the cost an adversary/threat would
incur finding a way into your system. When an adversary would need to spend very
little time/money to find a way into your system, perhaps it is better to simply
implement compromise recording (i.e., log events).

2. In a few sentences, explain the security design principle of least common mechanism.

The security design principle of least common mechanism says that different
subsystems/components in your software design should utilize different security
controls/mechanisms. An adversary/threat may then need to penetrate each of these
controls/mechanisms before they gain unauthorized access to your system/data.

3. For each of the following, explain how the security design principles of compromise
recording and least privilege may or may not apply.
a) Use of an ATM (automated teller machine).

Compromise recording: each of your transactions will be recorded/logged. This
would include each inquiry, deposit, and withdrawal as well as recording each
login event. Each log entry will identify you (likely by account number).

Least privilege: upon successful login, you would have access to your accounts.
However, you would not have access to accounts that you do not own. If you
cannot successfully login, you have access to no accounts.

b) Purchasing an item at a retail store with cash while using a customer loyalty card.
Compromise recording: your transaction will be recorded/logged. This would
include the merchandise purchased and the amount, along with your identifying
information (e.g., loyalty card account number, name).

https://creativecommons.org/licenses/by/4.0/

 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 6 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

Least privilege: this scenario has no impact on least privilege as there is no
authorization needed when using a customer loyalty card. A person could use
anyone’s loyalty card.

4. How would a formal review (aka: inspection) of a software design artifact impact the
software security design principle economy of mechanism?
A formal review (inspection) impacts economy of mechanism by allowing inspectors
to identify complexity that should be reduced or removed from the design.

5. What are the benefits and limitations of the security design principle open design?

a) Benefits:
The benefits of open design are that anyone may comment on your design. This
allows experts from outside your organization to find vulnerabilities and defects
that may be in your design.

b) Limitations:

The limitations of open design include an inability to make the design open due to
a competitive advantage policy that forbids designs from being publicized. Also,
you have no control over who reviews your design. So the designs could be
viewed by individuals that do not have the expertise to comment on its security
implications.

6. When thinking about the security design principles defend in depth and be reluctant to trust:

1. What do these have in common?
When using third-party software within your solution, you should understand
and test the security features in this software. In addition, other parts of your
design should include redundant mechanisms in case the third-party software
contains security mechanisms that are too weak, not implemented correctly, or
are changed over time.

2. How are these different?

Defend in depth says that your design should have redundant security features
at different layers of the software. In contrast, be reluctant to trust talks about
third party software and a willingness to verify the capabilities of this software.

Multiple choice and true/false, and short answer questions that have been included in quizzes
and final exams for a Networks Course, with an emphasis on secure software development, are
listed below.

1. Why is the application layer so important with regarding to meeting security goals and

applying security concepts?
a. Because the other layers satisfy many but not all of the goals/concepts.
b. Because the other layers were developed by someone else, and we should never rely

on third-party software to satisfy our security goals/concepts.
c. All of the above.

https://creativecommons.org/licenses/by/4.0/

 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 7 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

d. None of the above.

ANSWER: d

2. Which of the following is the best description for the security design principle complete

mediation?
a. Each request to access data should be checked for adherence to a protection scheme.
b. Each request to access data should be checked for adherence to an authentication

scheme.
c. Each request to access data should be checked for adherence to an authorization

scheme.
d. None of the above.

ANSWER: a

3. The security design principle of psychological acceptability means that the user interface for

a security mechanism conforms to the user's expectations.
a. True.
b. False.

ANSWER: a

4. The security design principle of complete mediation means that each request to access

data/system should be checked for adherence to a protection scheme. This design principle
should be designed into all systems, regardless of the impact to performance or usability.
a. True.
b. False.

ANSWER: b

5. Proprietary designs are inherently more secure than open designs since fewer people know

about the proprietary designs.
a. True.
b. False.

ANSWER: b.

6. HTTPS uses public key cryptography to establish a secret key between the client and

server.
e. True.
f. False.

ANSWER: a

https://creativecommons.org/licenses/by/4.0/

 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 8 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

Short answer questions that have been included in quizzes and final exams for a Networks
Course, with an emphasis on secure software development, are listed below. A possible
answer is included in bold italics.

7. Identify two security risks/issues if a distributed software application does not support the

security goal of confidentiality?

If the security goal of confidentiality is not considered when developing a distributed
application, then an individual may be able to:

• Gain access to persistent data that is in plaintext form (i.e., has not been
encrypted).

• Gain access to data in transit that is in plaintext form (i.e., has not been
encrypted).

• Gain access to data that they are not authorized to view, update, or delete.
This may lead to:

• Trust in the organization’s systems being decreased.
• User’s stop using the app since the app is less safe; their trust is lowered.
• A malicious actor stealing one’s identify.
• A malicious actor leaking personal data to the public.

8. What is the impact to the security of a distributed software application if its design does not

consider the security goal of integrity?

If the security goal of integrity is not considered when developing a distributed
application, then an individual may be able to:

• Create, update, or delete data even though they do not have the authority to do so.
• Create a fake file (i.e., spoofing) that includes malware. A user downloading this

file may behn get infected with the malware.
This may lead to:

• A lack of trust in the distributed application.

9. Identify a reason why the security goal of availability is so hard to achieve from the

perspective of developing a distributed software application?

The security goal of availability is so hard to achieve when developing a distributed
application since:

• A DDOS (distributed denial-of-service) attack is able to overwhelm the application
with packets that are not valid, preventing the application from receiving packets
that contain legitimate data. The design of the distributed software application
cannot do anything to prevent the invalid packets from being received; other
network protocol layers and devices must deal with this type of attack.

• The other goals may be in direct conflict with availability. For example, two-factor
authentication will increase confidentiality by requiring a second method for
proving who you are, but this second factor may not be working. This prevents

https://creativecommons.org/licenses/by/4.0/

 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 9 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

user from accessing the application, resulting in the application being more
secure but less available.

10. Explain why it is hard to develop a distributed software application that supports both non-

repudiation and anonymity?

Developing a distributed software application that supports non-repudiation means that
user actions would be recorded in a way that could be reviewed by others, which would
prevent a user from performing application actions that are intended to be anonymous.

11. Assurance is a belief an individual has that a system is trustworthy. This trust is managed by

the policies, permissions, and protections the system implements.
a. Give an example of a policy, along with its appropriate permission(s) and/or

protection(s), that will provide assurance to a user of a system.
b. Describe a risk that may affect the policy you described in 14.a, and identify how this risk

affects the permission(s) and/or protection(s) associated with the policy.

• A network policy that all data transmitted within an organization’s internal network be

encrypted using symmetric cryptography. An associated permission would be who
(i.e., people and systems) has access to the symmetric key used to encrypt and
decrypt the data. An associated protection would be how the entities that have
permission to access to the symmetric key get authenticated to ensure they are who
they say they are.
o A risk of this policy is when the symmetric key is compromised, allowing anyone

with the key to encrypt and decrypt data being transmitted on the internal
network. This risk may be realized through a weak authentication system that is
used to protect access and use of the key.

• Using HTTPS with a login screen. The user can only access their data after they login.
If they try to use HTTP deny access.
o If the certificate authority (for the SSL cert.) was compromised, the website may

be easier to spoof, along with the certificate. Protection: alert the user to a breach.
• A company with a policy to require two-factor authentication and a promise to never

disclose personal info to ad sites can assure users that their info on this company’s
systems is secure.
o If a user gets their password broken or stolen, this breaks the policy of keeping

user data confidential, because the malicious actor now has permission to access
the account info. They can, if things aren’t implemented correctly, reset or remove
two-factor authentication and other protections on the account.

12. As a designer of software applications, what two questions that you should asking and

discussing to help promote privacy of data?

• General comments:
o These questions should align with one or more of the security goals and

concepts OR should be related to one or more of the 15 security design
principles.

• Some examples:

https://creativecommons.org/licenses/by/4.0/

 Security Design Concepts
 Target Course: Software Engineering, Software Design
 Version 2 July 20, 2018

Le Moyne College INCUBATE (NSF Id 1500033) Page 10 of 10
This document is licensed with a Creative Commons Attribution 4.0 International License ©2017

o Do we really need to obtain and either store or transmit this private data?
o Which of this data may be used maliciously to identify our users/customers?
o Which of this data should we encrypt while it is persistently stored?
o Which of this data should we encrypt while it is in transit?
o What type of cryptographic algorithm should we be used to encrypt/decrypt

the data?
References
[1] J.H. Saltzer & M.D. Schroeder, (1975). The protection of information in computer systems.

Proceedings of the IEEE, 63(9), 1278-1308.
[2] G. McGraw, (2013). Thirteen principles to ensure enterprise system security. Retrieved on

July 28, 2015 from searchsecurity.techtarget.com/opinion/Thirteen-principles-to-ensure-
enterprise-system-security.

https://creativecommons.org/licenses/by/4.0/
http://searchsecurity.techtarget.com/opinion/Thirteen-principles-to-ensure-enterprise-system-security
http://searchsecurity.techtarget.com/opinion/Thirteen-principles-to-ensure-enterprise-system-security

	Security Design Concepts
	Target Course
	Learning Goals
	IAS Outcomes
	Dependencies
	Summary
	Estimated Time
	Materials
	What are the security principles that should be adhered to when designing and implementing a system?
	What are the common access control models?
	What are the cryptographic concepts that should be understood and used?
	What issues exist in correctly implementing and using computer security mechanisms?

	Assessment Strategies
	References

